Mutations of the human tyrosinase gene associated with tyrosinase related oculocutaneous albinism (OCA1)

1998 ◽  
Vol 12 (6) ◽  
pp. 433-434 ◽  
Author(s):  
WS Oetting ◽  
JP Fryer ◽  
RA King
1998 ◽  
Vol 16 ◽  
pp. S149
Author(s):  
Jun Matsunaga ◽  
Muneo Tanita ◽  
Miwako Dakeishi-Hara ◽  
Eriko Nakamura ◽  
Yoshinori Miyamura ◽  
...  

2020 ◽  
Vol 9 (3) ◽  
pp. 81-92
Author(s):  
Yuri Sergeev ◽  
Milan Patel

Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disorder caused by mutations in the tyrosinase gene. OCA1 exists in two forms: OCA1A and OCA1B. OCA1A is caused by a full loss of the human tyrosinase protein (Tyr), leading to an absence of pigment in skin, hair, and eyes, while OCA1B has reduced Tyr catalytic activity and pigment. The current understanding of the disease is hampered by the absence of information regarding the alterations of protein structure and the effects leading to either form of OCA1. Here, we used computational methods to find a general mechanism for establishing this link. Tyr and mutant variants were built through homology modeling, glycosylated in silico, minimized, and simulated using 100 ns molecular dynamics in water. For OCA1B mutants, cavity size is linked to DDG values for mutants, suggesting that partial loss of Tyr is associated with the destabilizing effect of the EGF-like domain movement. In OCA1A, active site mutation simulations indicate that the absence of O2 leads to protein instability. OCA1B mutants are described in severity by the size of the cavity within the EGF–Tyr interface, while active site OCA1A mutants are unable to fully coordinate copper, leading to an absence of O2 and Tyr instability. In patients with known genotypes, free energy changes may help identify the severity of the disease by assessing either the allosteric effect of the EGF-Tyr cavity in OCA1B or the active site instability in OCA1A.


2021 ◽  
Vol 22 (2) ◽  
pp. 734
Author(s):  
Paul K. Varghese ◽  
Mones Abu-Asab ◽  
Emilios K. Dimitriadis ◽  
Monika B. Dolinska ◽  
George P. Morcos ◽  
...  

Human Tyrosinase (Tyr) is the rate-limiting enzyme of the melanogenesis pathway. Tyr catalyzes the oxidation of the substrate L-DOPA into dopachrome and melanin. Currently, the characterization of dopachrome-related products is difficult due to the absence of a simple way to partition dopachrome from protein fraction. Here, we immobilize catalytically pure recombinant human Tyr domain (residues 19–469) containing 6xHis tag to Ni-loaded magnetic beads (MB). Transmission electron microscopy revealed Tyr-MB were within limits of 168.2 ± 24.4 nm while the dark-brown melanin images showed single and polymerized melanin with a diameter of 121.4 ± 18.1 nm. Using Hill kinetics, we show that Tyr-MB has a catalytic activity similar to that of intact Tyr. The diphenol oxidase reactions of L-DOPA show an increase of dopachrome formation with the number of MB and with temperature. At 50 °C, Tyr-MB shows some residual catalytic activity suggesting that the immobilized Tyr has increased protein stability. In contrast, under 37 °C, the dopachrome product, which is isolated from Tyr-MB particles, shows that dopachrome has an orange-brown color that is different from the color of the mixture of L-DOPA, Tyr, and dopachrome. In the future, Tyr-MB could be used for large-scale productions of dopachrome and melanin-related products and finding a treatment for oculocutaneous albinism-inherited diseases.


2004 ◽  
Vol 17 (4) ◽  
pp. 427-427
Author(s):  
R. A. King ◽  
J. Pietsch ◽  
M. J. Brott ◽  
S. Savage ◽  
J. P. Fryer ◽  
...  

1990 ◽  
Vol 87 (9) ◽  
pp. 3255-3258 ◽  
Author(s):  
L. B. Giebel ◽  
K. M. Strunk ◽  
R. A. King ◽  
J. M. Hanifin ◽  
R. A. Spritz

2017 ◽  
Vol 399 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Monika B. Dolinska ◽  
Yuri V. Sergeev

AbstractTyrosinase, a melanosomal glycoenzyme, catalyzes initial steps of the melanin biosynthesis. While glycosylation was previously studiedin vivo, we present three recombinant mutant variants of human tyrosinase, which were obtained using multiple site-directed mutagenesis, expressed in insect larvae, purified and characterized biochemically. The mutagenesis demonstrated the reduced protein expression and enzymatic activity due to possible loss of protein stability and protein degradation. However, the complete deglycosylation of asparagine residuesin vitro, including the residue in position 371, interrupts tyrosinase function, which is consistent with a melanin loss in oculocutaneous albinism type 1 (OCA1) patients.


1992 ◽  
Vol 3 (3) ◽  
pp. 181-185 ◽  
Author(s):  
J MATSUNAGA ◽  
A TAKEDA ◽  
Y TOMITA ◽  
M HARA ◽  
S SHIBAHARA ◽  
...  

2020 ◽  
Vol 21 (3) ◽  
pp. 895 ◽  
Author(s):  
Kenneth L. Young ◽  
Claudia Kassouf ◽  
Monika B. Dolinska ◽  
David Eric Anderson ◽  
Yuri V. Sergeev

Human tyrosinase (Tyr) is involved in pigment biosynthesis, where mutations in its corresponding gene TYR have been linked to oculocutaneous albinism 1, an autosomal recessive disorder. Although the enzymatic capabilities of Tyr have been well-characterized, the thermodynamic driving forces underlying melanogenesis remain unknown. Here, we analyze protein binding using the diphenol oxidase behavior of Tyr and van ’t Hoff temperature-dependent analysis. Recombinant Tyr was expressed and purified using a combination of affinity and size-exclusion chromatography. Michaelis-Menten constants were measured spectrophotometrically from diphenol oxidase reactions of Tyr, using L-3,4-dihydroxyphenylalanine (L-DOPA) as a substrate, at temperatures: 25, 31, 37, and 43 °C. Under the same conditions, the Tyr structure and the L-DOPA binding activity were simulated using 3 ns molecular dynamics and docking. The thermal Michaelis-Menten kinetics data were subjected to the van ‘t Hoff analysis and fitted with the computational model. The temperature-dependent analysis suggests that the association of L-DOPA with Tyr is a spontaneous enthalpy-driven reaction, which becomes unfavorable at the final step of dopachrome formation.


Sign in / Sign up

Export Citation Format

Share Document